DocumentCode :
1123588
Title :
A reduced parameter bilinear time series model
Author :
Zhang, Yongqing ; Hagan, Martin T.
Author_Institution :
Mactronix, Richardson, TX, USA
Volume :
42
Issue :
7
fYear :
1994
fDate :
7/1/1994 12:00:00 AM
Firstpage :
1867
Lastpage :
1870
Abstract :
A new bilinear time series structure is proposed and is tested on three sample time series to demonstrate its effectiveness. It is found that the proposed bilinear model can represent both nonlinearity and multiperiodicity, and it therefore provides a useful model class for general applications. In addition, the proposed bilinear model uses fewer parameters than conventional bilinear models with the same structure
Keywords :
parameter estimation; time series; bilinear time series; estimation techniques; identification techniques; multiperiodicity; nonlinearity; reduced parameter model; Analysis of variance; Autoregressive processes; Convolution; Digital signal processing; Gaussian noise; Integrated circuit modeling; Signal analysis; Signal processing; Telecommunications; White noise;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.298301
Filename :
298301
Link To Document :
بازگشت