DocumentCode :
1123884
Title :
High Critical Current Density {\\rm MgB}_{2}/{\\rm Fe} Multicore Wires Fabricated by an Internal Mg Diffusion Process
Author :
Hur, Jahmahn ; Togano, Kazumasa ; Matsumoto, Akiyoshi ; Kumakura, Hiroaki ; Wada, Hitoshi ; Kimura, Kaoru
Author_Institution :
Nat. Inst. for Mater. Sci., Tsukuba, Japan
Volume :
19
Issue :
3
fYear :
2009
fDate :
6/1/2009 12:00:00 AM
Firstpage :
2735
Lastpage :
2738
Abstract :
We fabricated multicore MgB2/Fe wires with much higher packing density and J c than powder-in-tube (PIT)-processed wires by internal Mg diffusion (IMD). Mg cores in the composite were uniformly cold worked into fine filaments by room-temperature groove rolling and drawing. After cold drawing, short specimens were heat treated at various temperatures from 550 to 800degC. During heat treatment, Mg reacted with a B(+SiC) layer forming a dense reacted layer inside an Fe sheath, which is composed of a MgB2 major phase and some minor impurity phases. Interestingly, the 7-core wire added with 5 mol% SiC heat treated at 600degC below the Mg melting point showed an apparent reaction forming a MgB2 layer and a fairly large amount of unreacted Mg inside a reacted MgB2 layer, suggesting that such formation is induced by solid-state reaction at the interface. On the other hand, almost all samples heat treated above 650degC showed MgB2 phase formation by typical liquid Mg infiltration producing a hollow at the center. The highest J c at 8 T and 4.2 K obtained for the multicore wire was 1.1 times 105 A/cm2 achieved by the addition of 5 mol% SiC and heat treatment at 600degC for 1 hr, which is slightly higher than the highest J c of the monocore wire (1.0 times 105 A/cm2) achieved for the wire added with 5 mol% SiC and heat treated at 670degC for 3 hr. The temperature of 600degC was lower than the melting point of Mg, suggesting that solid-solid reaction also forms a MgB2 layer in IMD. The small B layer thickness made it possible for Mg atoms to diffuse throughout the B layer at this low temperature.
Keywords :
cold rolling; composite materials; critical current density (superconductivity); diffusion; heat treatment; iron; magnesium compounds; materials preparation; melting point; multifilamentary superconductors; silicon compounds; MgB2-Fe-SiC; critical current density; heat treatment; impurity phases; infiltration; internal diffusion process; melting point; multicore wires; phase formation; powder-in-tube processed wires; room-temperature groove rolling; solid-state reaction; temperature 293 K to 298 K; temperature 4.2 K; temperature 550 C to 800 C; time 3 hr; $J_{c}$ ; ${rm MgB}_{2}$; Density; diffusion process;
fLanguage :
English
Journal_Title :
Applied Superconductivity, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8223
Type :
jour
DOI :
10.1109/TASC.2009.2019066
Filename :
5153209
Link To Document :
بازگشت