DocumentCode :
1125076
Title :
Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation
Author :
Voyce, Christopher J. ; Fitt, Alistair D. ; Monro, Tanya M.
Author_Institution :
Univ. of Oxford, Oxford
Volume :
26
Issue :
7
fYear :
2008
fDate :
4/1/2008 12:00:00 AM
Firstpage :
791
Lastpage :
798
Abstract :
A method for modeling the fabrication of capillary tubes is developed that includes the effects of preform rotation, and is used to reduce or remove polarization mode dispersion and fiber birefringence. The model is solved numerically, making use of extensive experimental investigations into furnace temperature profiles and silica glass viscosities, without the use of fitting parameters. Accurate predictions of the geometry of spun capillary tubes are made and compared directly with experimental results, showing remarkable agreement and demonstrating that the mathematical modeling of fiber drawing promises to be an accurate predictive tool for experimenters. Finally, a discussion of how this model impacts on the rotation of more general microstructured optical fiber preforms is given.
Keywords :
micro-optics; optical fibre fabrication; preforms; capillary tubes; fiber birefringence; furnace temperature profiles; mathematical modeling; microstructured fiber manufacture; microstructured optical fiber preforms; polarization mode dispersion; predictive tool; preform rotation; silica glass viscosities; Birefringence; Fabrication; Mathematical model; Numerical models; Optical fiber polarization; Optical fibers; Photonic crystal fibers; Polarization mode dispersion; Preforms; Virtual manufacturing; Mathematical modeling; optical fiber; optical fiber applications; optical fiber fabrication; optical fiber theory;
fLanguage :
English
Journal_Title :
Lightwave Technology, Journal of
Publisher :
ieee
ISSN :
0733-8724
Type :
jour
DOI :
10.1109/JLT.2007.914515
Filename :
4484139
Link To Document :
بازگشت