Title :
Polarity-dependent device degradation in SONOS transistors due to gate conduction under nonvolatile memory operations
Author :
Hyong, Jeong ; Shin, Hyungcheol ; Park, Young-June ; Min, Hong Shick
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci. & NSI-NCRC, Seoul Nat. Univ.
fDate :
6/1/2006 12:00:00 AM
Abstract :
In order to explain polarity-dependent device degradation observed in polysilicon-oxide-nitride-oxide-silicon (SONOS) transistors, a physics-based model is proposed. Comparing the trends in polarity-dependent electrical characteristics between two different gate dielectric structures of stacked oxide- nitride-oxide (ONO) and oxide alone (SiO2), it was demonstrated that the bimodal behavior observed in SONOS transistors is due to the stacked gate dielectric structure and that the device degradation is caused not by electrons but by holes. The proposed model is based on two models of the anode hole injection with maximum available hole energy Emax and the hydrogen-released interface trap generation. It is shown that the device degradation Delta* in the stacked-ONO gate structure can be expressed by the total fluence of the hole QAh injected from the anode side as Delta*apQAh 0.25. Utilizing a threshold voltage shift DeltaVth method, it was found that the gate conduction in SONOS transistors is governed by a specific tunneling process, which depends on the voltage drop VOX across the tunnel oxide. It is also shown that the gate conduction mechanism through the ONO stacks makes a smooth transition from one tunneling process to another depending on the relationship between the VOX and the tunneling barrier height of PhiB
Keywords :
MIS devices; dielectric materials; random-access storage; semiconductor device models; silicon compounds; SONOS transistors; SiO2; anode hole injection; electrical characteristics; gate conduction; gate dielectric structures; hole energy; hydrogen-released interface trap generation; nonvolatile memory operations; physics-based model; polarity-dependent device degradation; polysilicon-oxide-nitride-oxide-silicon transistors; stacked gate dielectric structure; threshold voltage shift; tunneling process; Anodes; Charge carrier processes; Degradation; Dielectric devices; Electric variables; Electron traps; Nonvolatile memory; SONOS devices; Threshold voltage; Tunneling; Degradation; gate conduction; hole fluence; negative bias temperature instability (NBTI); nonvolatile memory (NVM); polarity dependence; polysilicon–oxide–nitride–oxide–silicon (SONOS);
Journal_Title :
Device and Materials Reliability, IEEE Transactions on
DOI :
10.1109/TDMR.2006.876614