DocumentCode :
112543
Title :
Critical Pairs for the Product Singleton Bound
Author :
Mirandola, Diego ; Zemor, Gilles
Author_Institution :
Math. Inst., Leiden Univ., Leiden, Netherlands
Volume :
61
Issue :
9
fYear :
2015
fDate :
Sept. 2015
Firstpage :
4928
Lastpage :
4937
Abstract :
We characterize product-maximum distance separable (PMDS) pairs of linear codes, i.e., pairs of codes C and D whose product under coordinatewise multiplication has maximum possible minimum distance as a function of the code length and the dimensions dim C and dim D. We prove in particular, for C = D, that if the square of the code C has minimum distance at least 2, and (C, C) is a PMDS pair, then either C is a generalized Reed-Solomon code, or C is a direct sum of self-dual codes. In passing we establish coding-theory analogues of classical theorems of additive combinatorics.
Keywords :
Reed-Solomon codes; linear codes; PMDS pair; Product Singleton Bound; additive combinatorics; coding-theory analogues; coordinatewise multiplication; generalized Reed-Solomon code; linear codes; product-maximum distance separable pairs; Algebra; Cryptography; Generators; Linear codes; Reed-Solomon codes; Standards; Systematics; Error-correcting codes; Product Singleton Bound; Schur-product codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2015.2450207
Filename :
7137642
Link To Document :
بازگشت