DocumentCode :
1125640
Title :
Dynamic Model Identification for Industrial Robots
Author :
Swevers, Jan ; Verdonck, Walter ; Schutter, Joris De
Author_Institution :
Katholieke Univ. Leuven, Heverlee
Volume :
27
Issue :
5
fYear :
2007
Firstpage :
58
Lastpage :
71
Abstract :
The use of periodic excitation is the key feature of the presented robot identification method. Periodic excitation allows us to integrate the experiment design, signal processing, and parameter estimation. This integration simplifies the identification procedure and yields accurate models. Experimental results on an industrial robot manipulator show that the estimated dynamic robot model can accurately predict the actuator torques for a given robot motion. Accurate actuator torque prediction is a fundamental requirement for robot models that are used for offline programming, task optimization, and advanced model-based control. A payload identification approach is derived from the integrated robot identification method, and possesses the same favorable properties.
Keywords :
actuators; control engineering computing; industrial manipulators; manipulator dynamics; mobile robots; parameter estimation; robot programming; signal processing; actuator torque prediction; advanced model-based control; dynamic model identification; dynamic robot model; experiment design; industrial robot manipulator; industrial robots; offline programming; parameter estimation; payload identification approach; periodic excitation; robot identification method; robot motion; signal processing; task optimization; Actuators; Manipulator dynamics; Motion estimation; Parameter estimation; Predictive models; Process design; Robot motion; Service robots; Signal design; Signal processing;
fLanguage :
English
Journal_Title :
Control Systems, IEEE
Publisher :
ieee
ISSN :
1066-033X
Type :
jour
DOI :
10.1109/MCS.2007.904659
Filename :
4303475
Link To Document :
بازگشت