DocumentCode :
1126135
Title :
Convergence of the signed output error adaptive identifier
Author :
Garnett, Jeff ; Dasgupta, Soura ; Johnnson, C.R.
Author_Institution :
Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA
Volume :
39
Issue :
7
fYear :
1994
fDate :
7/1/1994 12:00:00 AM
Firstpage :
1387
Lastpage :
1399
Abstract :
This paper considers an adaptive output error identifier with a signum function in its update kernel. It is shown that the classical strict positive real (SPR) condition required for the convergence of traditional adaptive identifiers does not suffice for the convergence of this signed identifier. Instead, what is needed is a stronger operator condition called the strict dominant passive (SDP) condition. We give an analog of the Kalman-Yakubovic-Popov Lemma for the SDP conditions and, using it, give a convergence proof under the assumptions of persistent excitation and SDP
Keywords :
convergence; identification; Kalman-Yakubovic-Popov lemma; persistent excitation; signed output error adaptive identifier convergence; signum function; strict dominant passive condition; update kernel; Cities and towns; Convergence; Delay estimation; Equations; Error correction; Kernel; Noise measurement; Parameter estimation; Predictive models; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.299619
Filename :
299619
Link To Document :
بازگشت