Balanced phase-locked loops for optical homodyne receivers are investigated. When a balanced loop is employed in a communications system, a part of the transmitter power must be used for unmodulated residual carrier transmission. This leads to a power penalty. In addition, the performance of the balanced loops is affected by the laser phase noise, by the shot noise, and by the crosstalk between the data-detection- and phase-lock-branches of the receiver. The impact of these interferences is minimized if the loop bandwidth

is optimized. The value of B
optand the corresponding optimum loop performance are evaluated in this paper. Further, the maximum permissible laser linewidth

is evaluated and found to be

times R
b, where R
b(bit/s) is the system bit rate. This number corresponds to

and power penalty of 1 dB (0.5 dB due to residual carrier transmission, and 0.5 dB due to imperfect carrier phase recovery). For comparison, decision-driven phase-locked loops require only

. Thus, balanced loops impose more stringent requirements on the laser linewidth than decision-driven loops, but have the advantage of simpler implementation. An important additional advantage of balanced loops is their capability to suppress the excess intensity noise of semiconductor lasers.