• DocumentCode
    1127108
  • Title

    The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift

  • Author

    Minku, Leandro L. ; White, Allan P. ; Yao, Xin

  • Author_Institution
    Centre of Excellence for Res. in Comput. Intell. & Applic. (CERCIA), Univ. of Birmingham, Birmingham, UK
  • Volume
    22
  • Issue
    5
  • fYear
    2010
  • fDate
    5/1/2010 12:00:00 AM
  • Firstpage
    730
  • Lastpage
    742
  • Abstract
    Online learning algorithms often have to operate in the presence of concept drift (i.e., the concepts to be learned can change with time). This paper presents a new categorization for concept drift, separating drifts according to different criteria into mutually exclusive and nonheterogeneous categories. Moreover, although ensembles of learning machines have been used to learn in the presence of concept drift, there has been no deep study of why they can be helpful for that and which of their features can contribute or not for that. As diversity is one of these features, we present a diversity analysis in the presence of different types of drifts. We show that, before the drift, ensembles with less diversity obtain lower test errors. On the other hand, it is a good strategy to maintain highly diverse ensembles to obtain lower test errors shortly after the drift independent on the type of drift, even though high diversity is more important for more severe drifts. Longer after the drift, high diversity becomes less important. Diversity by itself can help to reduce the initial increase in error caused by a drift, but does not provide the faster recovery from drifts in long-term.
  • Keywords
    learning (artificial intelligence); neural nets; concept drift; diversity analysis; exclusive category; learning machines; nonheterogeneous category; online ensemble learning; Concept drift; diversity.; neural network ensembles; online learning;
  • fLanguage
    English
  • Journal_Title
    Knowledge and Data Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1041-4347
  • Type

    jour

  • DOI
    10.1109/TKDE.2009.156
  • Filename
    5156502