DocumentCode :
1128043
Title :
Optimal Regularization Parameter Estimation for Spectral Regression Discriminant Analysis
Author :
Chen, Wei ; Shan, Caifeng ; De Haan, Gerard
Author_Institution :
Philips Res., Eindhoven, Netherlands
Volume :
19
Issue :
12
fYear :
2009
Firstpage :
1921
Lastpage :
1926
Abstract :
Spectral regression discriminant analysis (SRDA) is an efficient subspace learning method proposed recently. One important unsolved issue of SRDA is how to automatically determine an appropriate regularization parameter. In this letter, we present a method to estimate the optimal regularization parameter for SRDA. We test our method in different applications including head pose estimation, face recognition, and text categorization. Our extensive experiments evidently illustrate the effectiveness and efficiency of our approach.
Keywords :
face recognition; parameter estimation; pose estimation; principal component analysis; face recognition; head pose estimation; optimal regularization parameter estimation; spectral regression discriminant analysis; subspace learning; text categorization; Regularization parameter estimation; spectral regression discriminant analysis; subspace learning;
fLanguage :
English
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8215
Type :
jour
DOI :
10.1109/TCSVT.2009.2026953
Filename :
5159444
Link To Document :
بازگشت