DocumentCode
1128043
Title
Optimal Regularization Parameter Estimation for Spectral Regression Discriminant Analysis
Author
Chen, Wei ; Shan, Caifeng ; De Haan, Gerard
Author_Institution
Philips Res., Eindhoven, Netherlands
Volume
19
Issue
12
fYear
2009
Firstpage
1921
Lastpage
1926
Abstract
Spectral regression discriminant analysis (SRDA) is an efficient subspace learning method proposed recently. One important unsolved issue of SRDA is how to automatically determine an appropriate regularization parameter. In this letter, we present a method to estimate the optimal regularization parameter for SRDA. We test our method in different applications including head pose estimation, face recognition, and text categorization. Our extensive experiments evidently illustrate the effectiveness and efficiency of our approach.
Keywords
face recognition; parameter estimation; pose estimation; principal component analysis; face recognition; head pose estimation; optimal regularization parameter estimation; spectral regression discriminant analysis; subspace learning; text categorization; Regularization parameter estimation; spectral regression discriminant analysis; subspace learning;
fLanguage
English
Journal_Title
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher
ieee
ISSN
1051-8215
Type
jour
DOI
10.1109/TCSVT.2009.2026953
Filename
5159444
Link To Document