DocumentCode :
1129256
Title :
Radial basis function neural network for direction-of-arrivals estimation
Author :
Lo, Titus ; Leung, Henry ; Litva, John
Author_Institution :
Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada
Volume :
1
Issue :
2
fYear :
1994
Firstpage :
45
Lastpage :
47
Abstract :
The authors propose the use of a radial basis function (RBF) network for direction-of-arrival (DOA) estimation. The RBF network is used to approximate the functional relationship between sensor outputs and the direction of arrivals. Simulation results show that the new technique has a better performance in terms of estimation errors than the standard MUSIC algorithm.<>
Keywords :
array signal processing; feedforward neural nets; DOA estimation; RBF network; direction-of-arrivals estimation; estimation errors; neural network; performance; radial basis function; sensor outputs; simulation results; Direction of arrival estimation; Estimation error; Frequency; Hopfield neural networks; Multiple signal classification; Neural networks; Phased arrays; Radial basis function networks; Sensor arrays; Signal processing algorithms;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.300315
Filename :
300315
Link To Document :
بازگشت