A new nonradiative-dielectric (NRD)-guide directional coupler using two NRD waveguides interconnected with a bridge is proposed and demonstrated. Propagation constants of the bridged NRD-guide couplers are investigated with an electric-field integral-equation method, and modeling results show that there is a maximum of coupling coefficient when the thickness of the bridge is made around 0.68 of the plate separation. In this case, the coupling length is reduced approximately 60% and the bandwidth under the tolerance limits of

0.5 dB of deviation for 3-dB coupling is nearly doubled with reference to its conventional counterparts. The use of a bridge not only improves the mechanical stability, but also makes the coupler performance reproducible. Experimental prototypes are fabricated with two 90

elbow bends that are used for the arms and the bridge-connected coupler section is terminated at both ends by tapered half-circle sections. A calibration procedure is used to remove mismatch effects between the NRD-guide and the rectangular waveguide in the measured results. Advantages of the new coupler as a passive component are shown for millimeter-wave integrated circuits.