DocumentCode :
1133467
Title :
A robust high accuracy speech recognition system for mobile applications
Author :
Deligne, Sabine ; Dharanipragada, Satya ; Gopinath, Ramesh ; Maison, Benoît ; Olsen, Peder ; Printz, Harry
Author_Institution :
IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA
Volume :
10
Issue :
8
fYear :
2002
fDate :
11/1/2002 12:00:00 AM
Firstpage :
551
Lastpage :
561
Abstract :
This paper describes a robust, accurate, efficient, low-resource, medium-vocabulary, grammar-based speech recognition system using hidden Markov models for mobile applications. Among the issues and techniques we explore are improving robustness and efficiency of the front-end, using multiple microphones for removing extraneous signals from speech via a new multichannel CDCN technique, reducing computation via silence detection, applying the Bayesian information criterion (BIC) to build smaller and better acoustic models, minimizing finite state grammars, using hybrid maximum likelihood and discriminative models, and automatically generating baseforms from single new-word utterances.
Keywords :
grammars; hidden Markov models; mobile radio; speech recognition; Bayesian information criterion; accurate speech recognition; acoustic models; efficient speech recognition; finite state grammars minimization; front-end efficiency; hybrid maximum likelihood-discriminative models; low-resource speech recognition; mobile applications; multichannel CDCN; multiple microphones; robust grammar-based speech recognition; silence detection; Acoustic devices; Acoustic signal detection; Bayesian methods; Hidden Markov models; Hybrid power systems; Maximum likelihood detection; Microphones; Robustness; Signal generators; Speech recognition;
fLanguage :
English
Journal_Title :
Speech and Audio Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6676
Type :
jour
DOI :
10.1109/TSA.2002.804541
Filename :
1175527
Link To Document :
بازگشت