DocumentCode :
1135564
Title :
Image Processing by Transforms Over a Finite Field
Author :
Reed, Irving S. ; Truong, T.K. ; Kwoh, Yik S. ; Hall, Ernest L.
Author_Institution :
Department of Electrical Engineering, University of Southern California
Issue :
9
fYear :
1977
Firstpage :
874
Lastpage :
881
Abstract :
A transform analogous to the discrete Fourier transform is defined on the Galois field GF(p), where p is a prime of the form k X 2n + 1, where k and n are integers. Such transforms offer a substantial variety of possible transform lengths and dynamic ranges. The fast Fourier transform (FFT) algorithm of this transform is faster than the conventional radix-2 FFT. A transform of this type is used to filter a two-dimensional picture (e.g., 256 X 256 samples), and the results are presented with a comparison to the standard FFT. An absence of roundoff errors is an important feature of this technique.
Keywords :
Convolution, cyclic groups, dynamic range, FFT, Fermat prime, Fourier transform, Galois field, Mersenne prime.; Discrete Fourier transforms; Discrete transforms; Dynamic range; Fast Fourier transforms; Filters; Fourier transforms; Galois fields; Image processing; Roundoff errors; Signal processing algorithms; Convolution, cyclic groups, dynamic range, FFT, Fermat prime, Fourier transform, Galois field, Mersenne prime.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.1977.1674935
Filename :
1674935
Link To Document :
بازگشت