DocumentCode :
1135862
Title :
Maximum Power Transfer for Full-Wave Rectifier Circuits
Author :
Arthur, Richard J.
Author_Institution :
Naval Surface Weapons Center
Issue :
3
fYear :
1983
fDate :
5/1/1983 12:00:00 AM
Firstpage :
454
Lastpage :
461
Abstract :
An analysis is done to determine the maximum power transfer conditions for full-wave rectifier circuits. Potential applications noted are implanted medical instruments, inductive power transfer to weapons, power transfer using space reflectors, and power generation in space. Three types of series impedances are considered: resistive/inductive (RL), resistive/capacitive (RC), and resistive/inductive/capacitive (RLC). The optimum ratio of ac-to-dc voltage output is determined for each type. For the case that involves all three impedance types, the optimum turning condition is also determined. The differential equations describing the circuits are solved in nondimensional form. The solutions involve partial differential equations, closed-form relationships, and simultaneous equations that are solved by numerical methods. The optimum ratio of peak ac-to-dc voltage ranges from 2.0 to 2.8, depending upon the circuit. The optimum turning differs significantly from the usual resonant conditions, especially for low Q.
Keywords :
Circuit analysis; Differential equations; Impedance; Instruments; Partial differential equations; RLC circuits; Rectifiers; Turning; Voltage; Weapons;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.1983.309326
Filename :
4102804
Link To Document :
بازگشت