Title :
Multiple model analytics for adverse event prediction in remote health monitoring systems
Author :
Pourhomayoun, Mohammad ; Alshurafa, Nabil ; Mortazavi, Bobak ; Ghasemzadeh, Hassan ; Sideris, Konstantinos ; Sadeghi, Bahman ; Ong, Michael ; Evangelista, Lorraine ; Romano, Patrick ; Auerbach, Andrew ; Kimchi, Asher ; Sarrafzadeh, Majid
Author_Institution :
Univ. of California Los Angeles (UCLA), Los Angeles, CA, USA
Abstract :
Remote health monitoring systems (RHMS) are gaining an important role in healthcare by collecting and transmitting patient vital information and providing data analysis and medical adverse event prediction (e.g. hospital readmission prediction). Reduction in the readmission rate is typically achieved by early prediction of the readmission based on the data collected from RHMS, and then applying early intervention to prevent the readmission. Given the diversity of patient populations and the continuous nature of patient monitoring, a single static predictive model is insufficient for accurately predicting adverse events. To address this issue, we propose a multiple prediction modeling technique that includes a set of accurate prediction models rather than one single universal predictor. In this paper, we propose a novel analytics framework based on the physiological data collected from RHMS, advanced clustering algorithms and multiple-model-classification. We tested our proposed method on a subset of data collected through a remote health monitoring system from 600 Heart Failure patients. Our proposed method provides significant improvements in prediction accuracy and performance over single predictive models.
Keywords :
biomedical telemetry; data analysis; health care; medical disorders; patient monitoring; RHMS; advanced clustering algorithms; analytics framework; data analysis; early intervention; healthcare; heart failure patients; medical adverse event prediction; multiple model analytics; multiple prediction modeling technique; multiple-model-classification; patient monitoring; patient populations; patient vital information; physiological data; prediction accuracy; readmission rate reduction; remote health monitoring systems; single static predictive model; single universal predictor; Biomedical monitoring; Classification algorithms; Feature extraction; Heart; Monitoring; Prediction algorithms; Predictive models;
Conference_Titel :
Healthcare Innovation Conference (HIC), 2014 IEEE
Conference_Location :
Seattle, WA
DOI :
10.1109/HIC.2014.7038886