DocumentCode :
1136803
Title :
Removal of Volatile Organic Compounds in Atmospheric Pressure Air by Means of Direct Current Glow Discharges
Author :
Jiang, Chunqi ; Mohamed, Abdel-Aleam H. ; Stark, Robert H. ; Yuan, James H. ; Schoenbach, Karl H.
Author_Institution :
Center for Bioelectrics, Old Dominion Univ., Norfolk, VA, USA
Volume :
33
Issue :
4
fYear :
2005
Firstpage :
1416
Lastpage :
1425
Abstract :
A nonthermal plasma with an electron density on the order of 10 ^12~\\hbox {cm$^{-3}$} and a gas temperature of 2000 K was generated in atmospheric pressure air, using a microhollow cathode discharge as plasma cathode. The plasma was sustained in a \\sim1~\\hbox {mm$^3$} micro reactor, by a voltage of 470 V between the plasma cathode and a planar anode, and at currents ranging from 12 to 22 mA. This direct current glow discharge has been used to study the remediation of methane and benzene, two of the most stable volatile organic compounds (VOCs). The removal fraction for 300-ppm methane in atmospheric pressure air, flowing through the 0.5-mm thick plasma layer, with a residence time of the gas in the plasma of less than 0.5 ms, was measured at 80% with an energy density of 4 kJ/L. For benzene, the remediation rate is as high as 90%, comparable to results obtained with low pressure glow discharges. The energy efficiency for benzene remediation is 0.9 g/kWh, higher than that obtained for benzene remediation in low pressure glow discharges in noble gases. However, the VOC fraction remaining was found to be limited to values of approximately 0.1 and 0.05 for methane and benzene, respectively. In addition to experimental studies, the VOC dissociation mechanism in a VOC/dry air mixture plasma was modeled using a zero-dimensional plasma chemistry code. The modeling results have shown that atomic oxygen impact reactions are the dominant dissociation reactions for VOC destruction in this kind of glow discharge. Diffusion of atomic oxygen to the dielectric walls of the reactor is assumed to cause the observed limitation in the VOC destruction rate and efficiency.
Keywords :
dissociation; glow discharges; organic compounds; plasma applications; plasma chemistry; plasma density; plasma transport processes; plasma-wall interactions; 0.5 mm; 12 to 22 mA; 2000 K; 470 V; atmospheric pressure air; atomic oxygen diffusion; atomic oxygen impact reactions; benzene; dielectric walls; direct current glow discharges; dissociation reactions; electron density; energy efficiency; gas residence time; methane; microhollow cathode discharge; microreactor; nonthermal plasma; planar anode; plasma cathode; plasma chemistry code; remediation rate; volatile organic compound removal; Atmospheric-pressure plasmas; Cathodes; Glow discharges; Inductors; Plasma chemistry; Plasma density; Plasma measurements; Plasma stability; Plasma temperature; Volatile organic compounds; Atmospheric pressure air; chemical decontamination; glow discharge; nonthermal plasma; volatile organic compounds;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.2005.851970
Filename :
1495591
Link To Document :
بازگشت