Title :
Chromatic Dispersion Monitoring for High-Speed WDM Systems Using Two-Photon Absorption in a Semiconductor Microcavity
Author :
Bondarczuk, K. ; Maguire, P.J. ; Reid, D. ; Barry, L.P. ; O´Dowd, J. ; Guo, W.H. ; Lynch, M. ; Bradley, A.L. ; Donegan, J.F.
Author_Institution :
Sch. of Electron. Eng., Dublin City Univ., Dublin
Abstract :
This paper presents a theoretical and experimental investigation into the use of a two-photon absorption (TPA) photodetector for use in chromatic dispersion (CD) monitoring in high-speed, WDM network. In order to overcome the inefficiency associated with the nonlinear optical-to-electrical TPA process, a microcavity structure is employed. An interesting feature of such a solution is the fact that the microcavity enhances only a narrow wavelength range determined by device design and angle at which the signal enters the device. Thus, a single device can be used to monitor a number of different wavelength channels without the need for additional external filters. When using a nonlinear photodetector, the photocurrent generated for Gaussian pulses is inversely related to the pulsewidth. However, when using a microcavity structure, the cavity bandwidth also needs to be considered, as does the shape of the optical pulses incident on the device. Simulation results are presented for a variety of cavity bandwidths, pulse shapes and durations, and spacing between adjacent wavelength channels. These results are verified experimental using a microcavity with a bandwidth of 260 GHz (2.1 nm) at normal incident angle, with the incident signal comprising of two wavelength channels separated by 1.25 THz (10 nm), each operating at an aggregate data rate of 160 Gb/s. The results demonstrate the applicability of the presented technique to monitor accumulated dispersion fluctuations in a range of 3 ps/nm for 160 Gb/s RZ data channel.
Keywords :
light absorption; nonlinear optics; optical fibre dispersion; optical pulse shaping; photodetectors; photon-photon interactions; wavelength division multiplexing; Gaussian pulses; chromatic dispersion monitoring; data channel; dispersion fluctuations; high-speed WDM network; nonlinear optical-to-electrical TPA process; nonlinear photodetector; optical pulse shape; photocurrent generation; semiconductor microcavity; two-photon absorption; wavelength channels; Absorption; Bandwidth; Chromatic dispersion; Microcavities; Monitoring; Optical filters; Optical pulse generation; Optical pulse shaping; Photodetectors; Wavelength division multiplexing; Nonlinear detection; cavity resonators; dispersive channels; wavelength division multiplexing (WDM);
Journal_Title :
Quantum Electronics, IEEE Journal of
DOI :
10.1109/JQE.2008.2001942