DocumentCode :
1137093
Title :
A Declustering Criterion for Feature Extraction in Pattern Recognition
Author :
Fehlauer, John ; Eisenstein, Bruce A.
Author_Institution :
Drexel University
Issue :
3
fYear :
1978
fDate :
3/1/1978 12:00:00 AM
Firstpage :
261
Lastpage :
266
Abstract :
A feature extraction technique based on a new criterion for "declustering" is presented. Declustering occurs when sample vectors from one pattern class form a densely packed point constellation, or cluster, in feature space while vectors from another class do not form a cluster but instead array themselves as outliers. Features chosen to optimize the declustering criterion enhance class separation and are robust over a wide range of measurement statistics.
Keywords :
Clustering; Rayleigh quotients; feature extraction; linear transformation; nonparametric classification; pattern recognition; principal component analysis; Breast; Feature extraction; Iron; Pattern classification; Pattern recognition; Principal component analysis; Robustness; Statistics; Transducers; Vectors; Clustering; Rayleigh quotients; feature extraction; linear transformation; nonparametric classification; pattern recognition; principal component analysis;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.1978.1675083
Filename :
1675083
Link To Document :
بازگشت