DocumentCode :
1138034
Title :
Passive microwave relative humidity retrievals using feedforward neural networks
Author :
Cabrera-Mercader, Carlos R. ; Staelin, David H.
Author_Institution :
Res. Lab. of Electron., MIT, Cambridge, MA, USA
Volume :
33
Issue :
6
fYear :
1995
fDate :
11/1/1995 12:00:00 AM
Firstpage :
1324
Lastpage :
1328
Abstract :
A technique for retrieving atmospheric humidity profiles using passive microwave spectral observations from satellite and multilayer feedforward neural networks (MFNN) is introduced. Relative humidity retrievals on a global scale from simulated radiances at fifteen frequencies between 23.8 and 183.3 GHz yielded rms errors in relative humidity of 6-14% over ocean and 6-15% over land at pressure levels ranging from 131 mbar to 1013 mbar. Comparison with a combined statistical and physical iterative retrieval scheme shows that superior retrievals can be obtained at a lower computational cost using MFNN
Keywords :
atmospheric humidity; atmospheric techniques; feedforward neural nets; geophysical signal processing; geophysics computing; humidity measurement; microwave measurement; millimetre wave measurement; radiometry; remote sensing; 183.3 GHz; 23.8 GHz; EHF; SHF; atmosphere; feedforward neural network; humidity; measurement technique; meteorology; microwave radiometry; millimetre wave radiometry; multilayer feedforward neural net; passive microwave relative humidity retrieval; satellite remote sensing; vapor; water vapour; Atmospheric modeling; Computational efficiency; Feedforward neural networks; Frequency; Humidity; Microwave theory and techniques; Multi-layer neural network; Neural networks; Oceans; Satellites;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/36.477189
Filename :
477189
Link To Document :
بازگشت