• DocumentCode
    1139770
  • Title

    Distance Approximating Dimension Reduction of Riemannian Manifolds

  • Author

    Chen, Changyou ; Zhang, Junping ; Fleischer, Rudolf

  • Author_Institution
    Shanghai Key Lab. of Intell. Inf. Process., Fudan Univ., Shanghai, China
  • Volume
    40
  • Issue
    1
  • fYear
    2010
  • Firstpage
    208
  • Lastpage
    217
  • Abstract
    We study the problem of projecting high-dimensional tensor data on an unspecified Riemannian manifold onto some lower dimensional subspace1 without much distorting the pairwise geodesic distances between data points on the Riemannian manifold while preserving discrimination ability. Existing algorithms, e.g., ISOMAP, that try to learn an isometric embedding of data points on a manifold have a non-satisfactory discrimination ability in practical applications such as face and gait recognition. In this paper, we propose a two-stage algorithm named tensor-based Riemannian manifold distance-approximating projection (TRIMAP), which can quickly compute an approximately optimal projection for a given tensor data set. In the first stage, we construct a graph from labeled or unlabeled data, which correspond to the supervised and unsupervised scenario, respectively, such that we can use the graph distance to obtain an upper bound on an objective function that preserves pairwise geodesic distances. Then, we perform some tensor-based optimization of this upper bound to obtain a projection onto a low-dimensional subspace. In the second stage, we propose three different strategies to enhance the discrimination ability, i.e., make data points from different classes easier to separate and make data points in the same class more compact. Experimental results on two benchmark data sets from the University of South Florida human gait database and the Face Recognition Technology face database show that the discrimination ability of TRIMAP exceeds that of other popular algorithms. We theoretically show that TRIMAP converges. We demonstrate, through experiments on six synthetic data sets, its potential ability to unfold nonlinear manifolds in the first stage. Index Terms-Gait recognition, linear discriminant analysis, manifold learning, multilinear tensor learning.
  • Keywords
    differential geometry; graph theory; learning (artificial intelligence); tensors; University of South Florida; distance approximating dimension reduction; face recognition technology face database; graph; high-dimensional tensor data projection; human gait database; pairwise geodesic distance; tensor-based Riemannian manifold distance-approximating projection; Gait recognition; linear discriminant analysis; manifold learning; multilinear tensor learning; Algorithms; Artificial Intelligence; Cybernetics; Databases, Factual; Discriminant Analysis; Face; Gait; Humans; Models, Theoretical; Pattern Recognition, Automated;
  • fLanguage
    English
  • Journal_Title
    Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1083-4419
  • Type

    jour

  • DOI
    10.1109/TSMCB.2009.2025028
  • Filename
    5166497