DocumentCode :
1140780
Title :
Iterative matrix bounds and computational solutions to the discrete algebraic Riccati equation
Author :
Komaroff, N.
Author_Institution :
Dept. of Electr. Eng., Queensland Univ., Qld., Australia
Volume :
39
Issue :
8
fYear :
1994
fDate :
8/1/1994 12:00:00 AM
Firstpage :
1676
Lastpage :
1678
Abstract :
Bilateral matrix bounds for the solution of the discrete algebraic Riccati equation (DARE) are presented. They are new or tighter than the existing bound. Computational algorithms to solve the DARE follow
Keywords :
difference equations; iterative methods; matrix algebra; nonlinear differential equations; bilateral matrix bounds; computational solutions; discrete algebraic Riccati equation; iterative matrix bounds; Australia; Control theory; Eigenvalues and eigenfunctions; Iterative algorithms; Linear matrix inequalities; Riccati equations; Signal processing; Signal processing algorithms; Symmetric matrices;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.310049
Filename :
310049
Link To Document :
بازگشت