Title :
Precision In-Plane Hand Assembly of Bulk-Microfabricated Components for High-Voltage MEMS Arrays Applications
Author :
Gassend, Blaise ; Velásquez-García, Luis Fernando ; Akinwande, Akintunde Ibitayo
Author_Institution :
Massachusetts Inst. of Technol., Cambridge, MA
fDate :
4/1/2009 12:00:00 AM
Abstract :
This paper reports the design and experimental validation of an in-plane assembly method for centimeter-scale bulk-microfabricated components. The method uses mesoscaled deep-reactive-ion-etching (DRIE)-patterned cantilevers that deflect and lock into small v-shaped notches as a result of the hand-exerted rotation between the two components of the assembly. The assembly method is intended for MEMS arrays that necessitate a 3-D electrode structure because of their requirement for low leakage currents and high voltages. The advantages of the assembly method include the ability to decouple the process flow of the components, higher overall device yield, modularity, reassembly capability, and tolerance to differential thermal expansion. Both tapered and untapered cantilevers were studied. Modeling of the cantilever set shows that the springs provide low stiffness while the assembly process is in progress and high stiffness once the assembly is completed, which results in a robust assembly. In addition, analysis of the linearly tapered cantilever predicts that the optimal linearly tapered beam has a cantilever tip height equal to 37% of the cantilever base height, which results in more than a threefold increase in the clamping force for a given cantilever length and deflection, compared to the untapered case. The linear taper profile achieves 80% of the optimal nonlinear taper profile, which would be impractical to fabricate. Analysis of the experimental data reveals a biaxial assembly precision of 6.2-mum rms and a standard deviation of 0.6 mum for assembly repeatability. Electrical insulation was investigated using both thin-film coatings and insulating substrates. Leakage currents less than 1 nA at 2 kV were demonstrated. Finally, this paper provides selected experimental data of a gated MEMS electrospray array as an example of the application of the assembly method.
Keywords :
cantilevers; microfabrication; micromechanical devices; bulk-microfabricated components; deep-reactive-ion-etching patterned cantilevers; high-voltage MEMS electrostatic arrays applications; inplane hand assembly; leakage currents; linear taper profile; low leakage currents; Electrospray; MEMS hand assembly; high-voltage MEMS packaging;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2008.2011115