DocumentCode :
1142376
Title :
Extraction of Moving Objects From Their Background Based on Multiple Adaptive Thresholds and Boundary Evaluation
Author :
Wang, Lu ; Yung, Nelson H C
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
Volume :
11
Issue :
1
fYear :
2010
fDate :
3/1/2010 12:00:00 AM
Firstpage :
40
Lastpage :
51
Abstract :
The extraction of moving objects from their background is a challenging task in visual surveillance. As a single threshold often fails to resolve ambiguities and correctly segment the object, in this paper, we propose a new method that uses three thresholds to accurately classify pixels as foreground or background. These thresholds are adaptively determined by considering the distributions of differences between the input and background images and are used to generate three boundary sets. These boundary sets are then merged to produce a final boundary set that represents the boundaries of the moving objects. The merging step proceeds by first identifying boundary segment pairs that are significantly inconsistent. Then, for each inconsistent boundary segment pair, its associated curvature, edge response, and shadow index are used as criteria to evaluate the probable location of the true boundary. The resulting boundary is finally refined by estimating the width of the halo-like boundary and referring to the foreground edge map. Experimental results show that the proposed method consistently performs well under different illumination conditions, including indoor, outdoor, moderate, sunny, rainy, and dim cases. By comparing with a ground truth in each case, both the classification error rate and the displacement error indicate an accurate detection, which show substantial improvement in comparison with other existing methods.
Keywords :
edge detection; image classification; image segmentation; surveillance; background images; boundary evaluation; boundary segment pair; boundary sets; displacement error; error rate classification; foreground edge map; halo-like boundary; moving object extraction; multiple adaptive thresholds; pixel classification; visual surveillance; Boundary evaluation; change detection; curvature; edge; foreground extraction; thresholds;
fLanguage :
English
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1524-9050
Type :
jour
DOI :
10.1109/TITS.2009.2026674
Filename :
5169851
Link To Document :
بازگشت