DocumentCode :
1143372
Title :
A method for improving classification reliability of multilayer perceptrons
Author :
Cordella, Luigi Pietro ; Stefano, Claudio De ; Tortorella, Francesco ; Vento, Mario
Author_Institution :
Dipartimento di Inf. e Sistemistica, Naples Univ., Italy
Volume :
6
Issue :
5
fYear :
1995
fDate :
9/1/1995 12:00:00 AM
Firstpage :
1140
Lastpage :
1147
Abstract :
Criteria for evaluating the classification reliability of a neural classifier and for accordingly making a reject option are proposed. Such an option, implemented by means of two rules which can be applied independently of topology, size, and training algorithms of the neural classifier, allows one to improve the classification reliability. It is assumed that a performance function P is defined which, taking into account the requirements of the particular application, evaluates the quality of the classification in terms of recognition, misclassification, and reject rates. Under this assumption the optimal reject threshold value, determining the best trade-off between reject rate and misclassification rate, is the one for which the function P reaches its absolute maximum. No constraints are imposed on the form of P, but the ones necessary in order that P actually measures the quality of the classification process. The reject threshold is evaluated on the basis of some statistical distributions characterizing the behavior of the classifier when operating without reject option; these distributions are computed once the training phase of the net has been completed. The method has been tested with a neural classifier devised for handprinted and multifont printed characters, by using a database of about 300000 samples. Experimental results are discussed
Keywords :
multilayer perceptrons; pattern classification; reliability; statistical analysis; classification reliability; handprinted printed characters; misclassification; multifont printed characters; multilayer perceptrons; neural classifier; optimal reject threshold value; performance function; recognition; reject option; Databases; Distributed computing; Multilayer perceptrons; Network topology; Neural networks; Neurons; Pattern recognition; Sorting; Statistical distributions; Testing;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.410358
Filename :
410358
Link To Document :
بازگشت