DocumentCode :
1145482
Title :
Exact minimax strategies for predictive density estimation, data compression, and model selection
Author :
Liang, Feng ; Barron, Andrew
Author_Institution :
Inst. of Stat. & Decision Sci., Duke Univ., Durham, NC, USA
Volume :
50
Issue :
11
fYear :
2004
Firstpage :
2708
Lastpage :
2726
Abstract :
For location and scale families of distributions and related settings of linear regression, we determine minimax procedures for predictive density estimation, for universal data compression, and for the minimum description length (MDL) criterion for model selection. The analysis gives the best invariant and indeed minimax procedure for predictive density estimation by directly verifying extended Bayes properties or, alternatively, by general aspects of decision theory on groups which are shown to simplify in the case of Kullback-Leibler loss. An exact minimax rule is generalized Bayes using a uniform (Lebesgue measure) prior on the location and log-scale parameters, which is made proper by conditioning on an initial set of observations.
Keywords :
Bayes methods; data compression; decision theory; minimax techniques; regression analysis; Haar measure; Kullback-Leibler loss; MDL; decision theory; extended Bayes property; linear regression; minimax procedure; minimum description length; predictive density estimation; universal data compression; Data compression; Decision theory; Density measurement; Length measurement; Linear regression; Minimax techniques; Neural networks; Predictive models; Statistical distributions; Statistics; Haar measure; Hunt–Stein; Kullback–Leibler divergence; MDL; invariance; minimax risk; minimum description length; predictive density estimation; universal coding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2004.836922
Filename :
1347357
Link To Document :
بازگشت