DocumentCode :
1146953
Title :
Temperature- and structural-parameters-dependent characteristics of V-band heterojunction FET MMIC DROs
Author :
Hosoya, Ken Ichi ; Ohata, Keiichi ; Inoue, Takashi ; Funabashi, Masahiro ; Kuzuhara, Masaaki
Author_Institution :
Photonic & Wireless Devices Res. Labs., NEC Corp., Ibaraki, Japan
Volume :
51
Issue :
2
fYear :
2003
Firstpage :
347
Lastpage :
355
Abstract :
This paper describes a systematic approach to the design and analysis for dielectric resonator oscillators (DROs). The approach features a temperatureand structural-parameters-dependent dielectric resonator (DR) model and a newly developed temperature-dependent nonlinear FET model. The implementation of these models on a harmonic-balance circuit simulator allows prediction for mechanical tuning characteristics, coupling strength dependencies, and temperature-dependent performance of oscillation frequency, output power, and phase noise of DROs. V-band heterojunction FET monolithic-microwave integrated-circuit DROs utilizing a TE01δ-mode cylindrical DR were designed and fabricated based on the proposed procedure. Good agreement between the predicted and measured characteristics indicates the validity of our design technique featuring the proposed DR and FET models.
Keywords :
MMIC oscillators; circuit simulation; circuit tuning; dielectric resonator oscillators; field effect MIMIC; field effect MMIC; integrated circuit design; integrated circuit measurement; integrated circuit modelling; integrated circuit noise; millimetre wave oscillators; phase noise; semiconductor device models; 46 to 56 GHz; DR model; TE01δ-mode cylindrical DR; V-band heterojunction FET MMIC DRO; V-band heterojunction FET monolithic microwave integrated-circuit DRO; coupling strength dependencies; design technique; dielectric resonator model; dielectric resonator oscillators; harmonic-balance circuit simulator; mechanical tuning characteristics; oscillation frequency; output power; phase noise; structural-parameters-dependent characteristics; systematic analysis; systematic design; temperature-dependent characteristics; temperature-dependent nonlinear FET model; temperature-dependent performance; Circuit optimization; Circuit simulation; Coupling circuits; Dielectrics; FETs; Field effect MMICs; Heterojunctions; Oscillators; Power system modeling; Predictive models;
fLanguage :
English
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9480
Type :
jour
DOI :
10.1109/TMTT.2002.807848
Filename :
1179398
Link To Document :
بازگشت