DocumentCode :
114758
Title :
Differentially private MIMO filtering for event streams and spatio-temporal monitoring
Author :
Le Ny, Jerome ; Mohammady, Meisam
Author_Institution :
Dept. of Electr. Eng., Polytech. Montreal, Montreal, QC, Canada
fYear :
2014
fDate :
15-17 Dec. 2014
Firstpage :
2148
Lastpage :
2153
Abstract :
Many large-scale systems such as intelligent transportation systems, smart grids or smart buildings collect data about the activities of their users to optimize their operations. In a typical scenario, signals originate from many sensors capturing events involving these users, and several statistics of interest need to be continuously published in real-time. Moreover, in order to encourage user participation, privacy issues need to be taken into consideration. This paper considers the problem of providing differential privacy guarantees for such multi-input multi-output systems operating continuously. We show in particular how to construct various extensions of the zero-forcing equalization mechanism, which we previously proposed for single-input single-output systems. We also describe an application to privately monitoring and forecasting occupancy in a building equipped with a dense network of motion detection sensors, which is useful for example to control its HVAC system.
Keywords :
MIMO systems; filtering theory; sensors; HVAC system; differential privacy; differentially private MIMO filtering; event streams; intelligent transportation systems; large-scale systems; motion detection sensors; single-input single-output systems; smart buildings; smart grids; spatio temporal monitoring; zero-forcing equalization mechanism; Buildings; MIMO; Monitoring; Noise; Privacy; Sensitivity; Sensors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
Type :
conf
DOI :
10.1109/CDC.2014.7039716
Filename :
7039716
Link To Document :
بازگشت