• DocumentCode
    1147741
  • Title

    Improving the Gilbert-Varshamov bound for q-ary codes

  • Author

    Vu, Van ; Wu, Lei

  • Author_Institution
    Dept. of Math., Univ. of California, La Jolla, CA, USA
  • Volume
    51
  • Issue
    9
  • fYear
    2005
  • Firstpage
    3200
  • Lastpage
    3208
  • Abstract
    Given positive integers q,n, and d, denote by Aq(n,d) the maximum size of a q-ary code of length n and minimum distance d. The famous Gilbert-Varshamov bound asserts that Aq(n,d+1)≥qn/Vq(n,d) where Vq(n,d)=Σi=0d (in)(q-1)i is the volume of a q-ary sphere of radius d. Extending a recent work of Jiang and Vardy on binary codes, we show that for any positive constant α less than (q-1)/q there is a positive constant c such that for d≤αn Aq(n,d+1)≥cqn/Vq(n,d)n. This confirms a conjecture by Jiang and Vardy.
  • Keywords
    binary codes; entropy codes; graph theory; Gilbert-Varshamov bound; binary code; entropy function; locally sparse graph; polynomial equivalence; positive integer; q-ary code length; Binary codes; Engineering profession; Entropy; H infinity control; Mathematics; Entropy function; Gilbert–Varshamov bound; independence number; locally sparse graphs; polynomial equivalence;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2005.853300
  • Filename
    1499052