DocumentCode :
1147890
Title :
Flexible, dry-released process for aluminum electrostatic actuators
Author :
Storment, Christopher W. ; Borkholder, David A. ; Westerlind, Victor ; Suh, John W. ; Maluf, Nadim I. ; Kovacs, Gregory T A
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., CA, USA
Volume :
3
Issue :
3
fYear :
1994
fDate :
9/1/1994 12:00:00 AM
Firstpage :
90
Lastpage :
96
Abstract :
We present an all-aluminum MEMS process (Al-MEMS) for the fabrication of large-gap electrostatic actuators with process steps that are compatible with the future use of underlying, pre-fabricated CMOS control circuitry. The process is purely additive above the substrate as opposed to processes that depend on etching pits into the silicon, and thereby permits a high degree of design freedom. Multilayer aluminum metallization is used with organic sacrificial layers to build up the actuator structures. Oxygen-based dry etching is used to remove the sacrificial layers. While this approach has been previously used by other investigators to fabricate optical modulators and displays, the specific process presented herein has been optimized for driving mechanical actuators with relatively large travels. The process is also intended to provide flexibility for design and future enhancements. For example, the gap height between the actuator and the underlying electrode(s) can be set using an adjustable polyimide sacrificial layer and aluminum “post” deposition step. Several Al-MEMS electrostatic structures designed for use as mechanical actuators are presented as well as some measured actuation characteristics
Keywords :
CMOS integrated circuits; electric actuators; electrostatic devices; integrated circuit technology; metallisation; micromechanical devices; Al; MEMS process; actuation characteristics; dry-released process; electrostatic actuators; gap height; mechanical actuators; multilayer Al metallization; organic sacrificial layers; pre-fabricated CMOS control circuitry; Additives; Aluminum; CMOS process; Circuits; Electrostatic actuators; Etching; Fabrication; Micromechanical devices; Optical modulation; Silicon;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/84.311558
Filename :
311558
Link To Document :
بازگشت