DocumentCode :
1149992
Title :
Nonlinear filters: beyond the Kalman filter
Author :
Daum, Fred
Author_Institution :
Raytheon Co., USA
Volume :
20
Issue :
8
fYear :
2005
Firstpage :
57
Lastpage :
69
Abstract :
Nonlinear filters can provide estimation accuracy that is vastly superior to extended Kalman filters for some important practical applications. We compare several types of nonlinear filters, including: particle filters (PFs), unscented Kalman filters, extended Kalman filters, batch filters and exact recursive filters. The key practical issue in nonlinear filtering is computational complexity, which is often called "the curse of dimensionality". It has been asserted that PFs avoid the curse of dimensionality, but this is generally incorrect. Well-designed PFs with good proposal densities sometimes avoid the curse of dimensionality, but not otherwise. Future research in nonlinear filtering will exploit recent progress in quasi-Monte Carlo algorithms (rather than boring old Monte Carlo methods), as well as ideas borrowed from physics (e.g., dimensional interpolation) and new mesh-free adjoint methods for solving PDEs. This tutorial was written for normal engineers, who do not have nonlinear filters for breakfast.
Keywords :
Kalman filters; Monte Carlo methods; nonlinear filters; recursive filters; PDE mesh-free adjoint methods; batch filters; dimensional interpolation; exact recursive filters; extended Kalman filters; filter estimation accuracy; nonlinear filters; particle filters; quasi-Monte Carlo algorithms; real time computational complexity; unscented Kalman filters; Computational complexity; Costs; Covariance matrix; Filtering algorithms; Nonlinear filters; Particle filters; Physics; Proposals; Shape measurement; State estimation;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems Magazine, IEEE
Publisher :
ieee
ISSN :
0885-8985
Type :
jour
DOI :
10.1109/MAES.2005.1499276
Filename :
1499276
Link To Document :
بازگشت