Title :
Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues
Author :
Noor, F. ; Morgera, S.D.
Author_Institution :
Dept. of Electr. Eng., McGill Univ., Montreal, Que., Canada
fDate :
8/1/1992 12:00:00 AM
Abstract :
A solution to the inverse eigenvalue problem for Hermitian Toeplitz matrices is presented. The approach taken is to first construct a real symmetric negacyclic matrix of order 2n and to then relate the negacyclic matrix to a Hermitian Toeplitz matrix of order n with the desired eigenspectrum
Keywords :
eigenvalues and eigenfunctions; matrix algebra; Hermitian Toeplitz matrix; eigenspectrum; inverse eigenvalue problem; real symmetric negacyclic matrix; Councils; Discrete transforms; Eigenvalues and eigenfunctions; Mathematics; Signal processing; Stochastic processes; Symmetric matrices; Vehicles;
Journal_Title :
Signal Processing, IEEE Transactions on