DocumentCode :
1153728
Title :
Encoding nondeterministic fuzzy tree automata into recursive neural networks
Author :
Gori, Marco ; Petrosino, Alfredo
Author_Institution :
Dipt. di Ingegneria dell´´Informazione, Univ. di Siena, Italy
Volume :
15
Issue :
6
fYear :
2004
Firstpage :
1435
Lastpage :
1449
Abstract :
Fuzzy neural systems have been a subject of great interest in the last few years, due to their abilities to facilitate the exchange of information between symbolic and subsymbolic domains. However, the models in the literature are not able to deal with structured organization of information, that is typically required by symbolic processing. In many application domains, the patterns are not only structured, but a fuzziness degree is attached to each subsymbolic pattern primitive. The purpose of this paper is to show how recursive neural networks, properly conceived for dealing with structured information, can represent nondeterministic fuzzy frontier-to-root tree automata. Whereas available prior knowledge expressed in terms of fuzzy state transition rules are injected into a recursive network, unknown rules are supposed to be filled in by data-driven learning. We also prove the stability of the encoding algorithm, extending previous results on the injection of fuzzy finite-state dynamics in high-order recurrent networks.
Keywords :
automata theory; encoding; fuzzy neural nets; knowledge representation; recurrent neural nets; trees (mathematics); data-driven learning; nondeterministic fuzzy tree automata encoding; recursive neural network; subsymbolic pattern primitive; symbolic processing; Application software; Councils; Encoding; Fuzzy neural networks; Fuzzy sets; Fuzzy systems; Learning automata; Neural networks; Pattern recognition; Production; Fuzzy neural networks; fuzzy systems; fuzzy tree automata; knowledge representation; recursive neural networks; Algorithms; Artificial Intelligence; Computer Simulation; Decision Support Techniques; Feedback; Fuzzy Logic; Logistic Models; Neural Networks (Computer); Pattern Recognition, Automated;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2004.837585
Filename :
1353280
Link To Document :
بازگشت