DocumentCode :
1155016
Title :
Convolutional and Tail-Biting Quantum Error-Correcting Codes
Author :
Forney, G. David ; Grassl, Markus ; Guha, Saikat
Author_Institution :
Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA
Volume :
53
Issue :
3
fYear :
2007
fDate :
3/1/2007 12:00:00 AM
Firstpage :
865
Lastpage :
880
Abstract :
Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding complexity are derived from these convolutional codes via tail-biting
Keywords :
convolutional codes; decoding; error correction codes; quantum theory; QECC; convolutional codes; decoding complexity; stabilizer codes; tail-biting quantum error-correcting codes; Block codes; Communication systems; Convolutional codes; Decoding; Error correction codes; Laboratories; Protection; Quantum computing; Quantum mechanics; Robustness; CSS-type codes; quantum convolutional codes (QCCs); quantum error-correcting codes; quantum tail-biting codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2006.890698
Filename :
4106119
Link To Document :
بازگشت