DocumentCode :
1156412
Title :
On the development of a multifunction millimeter-wave sensor for displacement sensing and low-velocity measurement
Author :
Kim, Seoktae ; Nguyen, Cam
Author_Institution :
Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA
Volume :
52
Issue :
11
fYear :
2004
Firstpage :
2503
Lastpage :
2512
Abstract :
A new multifunction millimeter-wave sensor operating at 35.6 GHz has been developed and demonstrated for measurement of displacement and low velocity. The sensor was realized using microwave integrated circuits and monolithic microwave integrated circuits. Measured displacement results show unprecedented resolution of only 10 μm, which is approximately equivalent to λ0/840 in terms of free-space wavelength λ0, and maximum error of only 27 μm. A polynomial curve-fitting method was also developed for correcting the error. Results indicate that multiple reflections dominate the displacement measurement error. The sensor was able to measure speed as low as 27.7 mm/s, corresponding to 6.6 Hz in Doppler frequency, with an estimated velocity resolution of 2.7 mm/s. A digital quadrature mixer (DQM) was configured as a phase-detecting processor, employing a quadrature sampling signal-processing technique, to overcome the nonlinear phase response problem of a conventional analog quadrature mixer. The DQM also enables low Doppler frequency to be measured with high resolution. The Doppler frequency was determined by applying linear regression on the phase sampled within only fractions of the period of the Doppler frequency. Short-term stability of the microwave signal source was also considered to predict its effect on measurement accuracy.
Keywords :
Doppler shift; MMIC; curve fitting; displacement measurement; error correction; frequency estimation; frequency measurement; measurement errors; millimetre wave detectors; polynomials; radiowave interferometry; regression analysis; signal sampling; velocity measurement; 2.7 mm/s; 27.7 mm/s; 35.6 GHz; 6.6 Hz; Doppler frequency; analog quadrature mixer; digital quadrature mixer; displacement measurement error; displacement sensor; error correction; linear regression; low velocity measurement; microwave signal source; monolithic microwave integrated circuits; multifunction millimeter wave sensor; multiple reflections; nonlinear phase response problem; phase detecting processor; polynomial curve fitting method; quadrature sampling signal processing technique; short term stability; Displacement measurement; Frequency; Integrated circuit measurements; MMICs; Microwave integrated circuits; Millimeter wave integrated circuits; Millimeter wave measurements; Millimeter wave technology; Velocity measurement; Wavelength measurement; 65; Displacement measurement; millimeter-wave sensor; radio interferometry; velocity measurement;
fLanguage :
English
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9480
Type :
jour
DOI :
10.1109/TMTT.2004.837153
Filename :
1353533
Link To Document :
بازگشت