DocumentCode :
1156428
Title :
A numerical analysis of the behaviour of the Galerkin equations relevant to electromagnetic wave propagation in nonlinear media
Author :
de Magistris, M. ; Miano, G. ; Verolino, L. ; Visone, C. ; Zamparelli, E.
Author_Institution :
Dipartimento di Ingegneria Elettrica, Naples Univ., Italy
Volume :
30
Issue :
5
fYear :
1994
fDate :
9/1/1994 12:00:00 AM
Firstpage :
3196
Lastpage :
3199
Abstract :
The electromagnetic scattering of a normal incident monochromatic plane wave from a “strongly” nonlinear dielectric slab is considered. The time dynamic of the field inside the nonlinear body is studied by means of the Galerkin method. The solutions of the Galerkin equations are calculated using the fourth-order Runge-Kutta-Nystrom method. Their asymptotic behaviour abruptly changes its qualitative properties by continuous variation of the system parameters and a surprising wealth of different nonlinear phenomena appears. They are: bifurcation of the periodic response, subharmonic, almost-periodic solutions and chaotic dynamics
Keywords :
bifurcation; chaos; electromagnetic wave scattering; numerical analysis; EM wave scattering; Galerkin equations; asymptotic behaviour; bifurcation; chaotic dynamics; electromagnetic scattering; fourth-order Runge-Kutta-Nystrom method; nonlinear dielectric slab; nonlinear media; normal incident monochromatic plane wave; numerical analysis; periodic response; subharmonic almost-periodic solutions; Bifurcation; Chaos; Dielectrics; Electromagnetic propagation; Electromagnetic scattering; Moment methods; Nonlinear dynamical systems; Nonlinear equations; Numerical analysis; Slabs;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/20.312617
Filename :
312617
Link To Document :
بازگشت