Title :
Closed-form posterior Cramer-Rao bounds for bearings-only tracking
Author :
Brehard, T. ; Le Cadre, J.R.
Author_Institution :
IRISA/CNRS, Rennes
fDate :
10/1/2006 12:00:00 AM
Abstract :
We address the classical bearings-only tracking problem (BOT) for a single object, which belongs to the general class of nonlinear filtering problems. Recently, algorithms based on sequential Monte-Carlo methods (particle filtering) have been proposed. As far as performance analysis is concerned, the posterior Cramer-Rao bound (PCRB) provides a lower bound on the mean square error. Classically, under a technical assumption named "asymptotic unbiasedness assumption", the PCRB is given by the inverse Fisher information matrix (FIM). The latter is computed using Tichavsky\´s recursive formula via Monte-Carlo methods. Two major problems are studied here. First, we show that the asymptotic unbiasedness assumption can be replaced by an assumption which is more meaningful. Second, an exact algorithm to compute the PCRB is derived via Tichavsky\´s recursive formula without using Monte-Carlo methods. This result is based on a new coordinate system named logarithmic polar coordinate (LPC) system. Simulation results illustrate that PCRB can now be computed accurately and quickly, making it suitable for sensor management applications
Keywords :
Monte Carlo methods; nonlinear filters; particle filtering (numerical methods); target tracking; FIM; Fisher information matrix; Monte Carlo methods; Tichavsky recursive formula; bearings only tracking; closed form; logarithmic polar coordinate; mean square error; nonlinear filtering problems; particle filtering; posterior Cramer-Rao bounds; Computational modeling; Filtering algorithms; Linear matrix inequalities; Linear predictive coding; Mean square error methods; Nonlinear equations; Performance analysis; Target tracking; Time measurement; Trajectory;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
DOI :
10.1109/TAES.2006.314568