Title :
Discovering gene networks with a neural-genetic hybrid
Author :
Keedwell, Edward ; Narayanan, Ajit
Author_Institution :
Sch. of Eng., Comput. Sci. & Math., Exeter Univ., UK
Abstract :
Recent advances in biology (namely, DNA arrays) allow an unprecedented view of the biochemical mechanisms contained within a cell. However, this technology raises new challenges for computer scientists and biologists alike, as the data created by these arrays is often highly complex. One of the challenges is the elucidation of the regulatory connections and interactions between genes, proteins and other gene products. In this paper, a novel method is described for determining gene interactions in temporal gene expression data using genetic algorithms combined with a neural network component. Experiments conducted on real-world temporal gene expression data sets confirm that the approach is capable of finding gene networks that fit the data. A further repeated approach shows that those genes significantly involved in interaction with other genes can be highlighted and hypothetical gene networks and circuits proposed for further laboratory testing.
Keywords :
DNA; arrays; biochemistry; biology computing; biotechnology; cellular biophysics; genetic algorithms; genetics; molecular biophysics; neural nets; DNA arrays; biochemistry; cell; gene interactions; gene networks; gene regulatory connections; genetic algorithms; neural network; neural-genetic hybrid; proteins; temporal gene expression data; Cancer; Cells (biology); Circuit testing; DNA; Gene expression; Genetic algorithms; Humans; Neural networks; Organisms; Proteins; Index Terms- Gene expression analysis; gene interactions.; genetic algorithms; neural networks; reverse-engineering; Algorithms; Computer Simulation; Gene Expression; Gene Expression Profiling; Models, Genetic; Neural Networks (Computer); Oligonucleotide Array Sequence Analysis; Pattern Recognition, Automated; Protein Interaction Mapping; Signal Transduction;
Journal_Title :
Computational Biology and Bioinformatics, IEEE/ACM Transactions on
DOI :
10.1109/TCBB.2005.40