DocumentCode :
1157746
Title :
Bidiagonal factorization of Fourier matrices and systolic algorithms for computing discrete Fourier transforms
Author :
Gader, Paul D.
Author_Institution :
Math. Dept., Wisconsin Univ., Oshkosh, WI, USA
Volume :
37
Issue :
8
fYear :
1989
fDate :
8/1/1989 12:00:00 AM
Firstpage :
1280
Lastpage :
1283
Abstract :
An algorithm is presented for factoring Fourier matrices into products of bidiagonal matrices. These factorizations have the same structure for every n and make possible discrete Fourier transform (DFT) computation via a sequence of local, regular computations. A parallel pipeline technique for computing sequences of k-point DFTs, for every kn, on a systolic array is proposed
Keywords :
Fourier transforms; matrix algebra; parallel algorithms; pipeline processing; signal processing; DFT; Fourier matrices; bidiagonal matrices; discrete Fourier transforms; factorization; pipeline; signal processing; systolic algorithms; Bandwidth; Concurrent computing; Discrete Fourier transforms; Fourier transforms; Genetic mutations; Matrix decomposition; Pipelines;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/29.31275
Filename :
31275
Link To Document :
بازگشت