DocumentCode :
1158189
Title :
A Goppa-like bound on the trellis state complexity of algebraic-geometric codes
Author :
Munuera, Carlos ; Torres, Fernando
Author_Institution :
Dept. of Appl. Math., Univ. of Valladolid, Castilla, Spain
Volume :
49
Issue :
3
fYear :
2003
fDate :
3/1/2003 12:00:00 AM
Firstpage :
733
Lastpage :
737
Abstract :
For a linear code C of length n and dimension k, Wolf (1978) noticed that the trellis state complexity s(C) of C is upper-bounded by w(C):=min(k,n-k). We point out some new lower bounds for s(C). In particular, if C is an algebraic-geometric code, then s(C)≥w(C)-(g-a), where g is the genus of the underlying curve and a is the abundance of the code.
Keywords :
algebraic codes; codes; computational complexity; geometric codes; Goppa-like bound; algebraic-geometric codes; code abundance; code dimension; curve genus; linear code; lower bounds; trellis state complexity; Algebra; Block codes; Convolutional codes; Decoding; Error correction codes; Galois fields; History; Linear code; Mathematics; Viterbi algorithm;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2002.808129
Filename :
1184150
Link To Document :
بازگشت