DocumentCode :
1158224
Title :
Cyclic codes over GR(4m) which are also cyclic over Z4
Author :
Pei, Junying ; Cui, Jie ; Liu, Sanyang
Author_Institution :
Sch. of Sci., Xidian Univ., Xi´´an, China
Volume :
49
Issue :
3
fYear :
2003
fDate :
3/1/2003 12:00:00 AM
Firstpage :
749
Lastpage :
758
Abstract :
Let GR(4m) be the Galois ring of characteristic 4 and cardinality 4m, and α_={α01,...,αm-1} be a basis of GR(4m) over Z4 when we regard GR(4m) as a free Z4-module of rank m. Define the map dα_ from GR(4m)[z]/(zn-1) into Z4[z]/(zmn-1) by dα_(a(z))=Σi=0m-1Σj=0n-1aijzmj+i where a(z)=Σj=0n-1ajzj and aji=0m-1aijαi, aij∈Z4. Then, for any linear code C of length n over GR(4m), its image dα_(C) is a Z4-linear code of length mn. In this article, for n and m being odd integers, it is determined all pairs (α_,C) such that dα_(C) is Z4-cyclic, where α_ is a basis of GR(4m) over Z4, and C is a cyclic code of length n over GR(4m).
Keywords :
Galois fields; cyclic codes; linear codes; Galois ring; code length; cyclic code; cyclic codes; linear code; Galois fields; Linear code; Mathematics; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2002.808133
Filename :
1184154
Link To Document :
بازگشت