Title :
Region-Level Motion-Based Foreground Segmentation Under a Bayesian Network
Author :
Huang, Shih-Shinh ; Fu, Li-Chen ; Hsiao, Pei-Yung
Author_Institution :
Dept. of Comput. & Commun. Eng., Nat. Kaohsiung First Univ. of Sci. & Technol., Kaohsiung
fDate :
4/1/2009 12:00:00 AM
Abstract :
This paper presents a probabilistic approach for automatically segmenting foreground objects from a video sequence. In order to save computation time and be robust to noise effects, a region detection algorithm incorporating edge information is first proposed to identify the regions of interest, within which the spatial relationships are represented by a region adjacency graph. Next, we consider the motion of the foreground objects and, hence, utilize the temporal coherence property in the regions detected. Thus, the foreground segmentation problem is formulated as follows. Given two consecutive image frames and the segmentation result priorly obtained, we simultaneously estimate the motion vector field and the foreground segmentation mask in a mutually supporting manner by maximizing the conditional joint probability density function of these two elements. To represent the conditional joint probability density function in a compact form, a Bayesian network is adopted, which is derived to model the interdependency of these two elements. Experimental results for several video sequences are provided to demonstrate the effectiveness of the proposed approach.
Keywords :
belief networks; image segmentation; image sequences; video signal processing; Bayesian network; edge information; foreground segmentation; image frames; noise effects; region adjacency graph; region-level motion; temporal coherence property; video sequences; Image segmentation; motion measurement; surveillance;
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
DOI :
10.1109/TCSVT.2009.2013507