Title :
Electrical Impedance Tomographic Imaging of Buried Landmines
Author :
Church, Philip ; McFee, John Elton ; Gagnon, Stephane ; Wort, Philip
Author_Institution :
Neptec Design Group, Kanata, Ont.
Abstract :
A prototype confirmation landmine detector, based on electrical impedancetomography (EIT), which can operate under realistic environmental conditions, has been developed. Laboratory and field experiments demonstrated that it is possible to reliably reconstruct, on the scale of the electrode spacing (ES) (in width and depth), conductivity perturbations due to a shallow buried antitank mine or a similar object in a variety of soils (black earth, clay, sand) down to depths equal to the dimensions of the object (1-1.5 ES, equivalent to 14-21 cm for a 64-electrode 1 m times 1 m array). These represent the first EIT images of real landmines computed from measured data. Occasional problems were encountered with the electrical contact in very dry soils, with excessive insertion pressure being required for reliable electrode contact. However, poor contacts could be detected, and the offending probe was either reinserted or compensation was applied. A matched filter detection algorithm based on a replica of the object of interest was developed and shown to effectively reduce the false alarm rate of the detector. EIT is especially suited for wet lands and underwater, where other mine detectors perform poorly. Experiments in a water-and sediment-filled tank have demonstrated that detection of minelike objects in such an environment with a submerged array is feasible. These experiments represent the first EIT measurements of targets using an electrode array submerged underwater. EIT may also have an application in locating intact mines in the berms formed by mine-clearing equipment. The EIT sensor head could be made cheaply enough to be disposable and remotely inserted to improve safety
Keywords :
electric impedance imaging; landmine detection; matched filters; black earth; clay; conductivity perturbations; electrical contact; electrical impedance tomographic imaging; electrode array; electrode spacing; excessive insertion pressure; landmines; matched filter detection algorithm; mine-clearing equipment; prototype confirmation landmine detector; sand; shallow buried antitank mine; very dry soils; wet lands; Contacts; Detectors; Electrodes; Impedance; Laboratories; Landmine detection; Object detection; Prototypes; Soil; Tomography; Conductivity measurement; impedance imaging; impedance tomography; object detection; soil; underwater object detection;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2006.873208