DocumentCode :
116076
Title :
Assesment ofapriori and enhanced apriori algorithms in mining itemsets from the KDD database
Author :
Logeswari, T. ; Valarmathi, N.
Author_Institution :
Dept. of Comput. Applic., Dr. N.G.P. Inst. of Technol., Coimbatore, India
fYear :
2014
fDate :
6-8 March 2014
Firstpage :
1
Lastpage :
5
Abstract :
In this paper, the best way to mine the frequent item sets is proposed. Apriori and Enhanced Apriori algorithms are explained here. These both algorithms are compared and analysed to find the best one in terms of time complexity and I/O Transaction.
Keywords :
data mining; Apriori algorithm; I/O transaction; KDD database; enhanced Apriori algorithm; input-output transaction; itemset mining; knowledge discovery in database; time complexity; Algorithm design and analysis; Association rules; Itemsets; Prediction algorithms; Software algorithms; Candidate generation; Frequent Itemsets; Threshold; Transaction_Size;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Green Computing Communication and Electrical Engineering (ICGCCEE), 2014 International Conference on
Conference_Location :
Coimbatore
Type :
conf
DOI :
10.1109/ICGCCEE.2014.6921405
Filename :
6921405
Link To Document :
بازگشت