DocumentCode
116143
Title
Cognitive identification of systems using nonlinear dynamics
Author
Xiaoxiang Liu ; Sabbir, Tarikul ; Leung, Henry
Author_Institution
Complex Syst. Inc., Calgary, AB, Canada
fYear
2014
fDate
18-20 Aug. 2014
Firstpage
61
Lastpage
66
Abstract
In this paper, we address the problem of semi-blind parameter estimation of linear systems driven by chaotic signal. We propose an on-line expectation maximization (EM) based extended fixed-lag Kalman smoothing (EM-EFLKS) estimator to simultaneously estimate parameters of system along with the chaotic signal. The performance of the proposed estimator is compared to its offline counterpart, EM-EKS estimator, which achieves ML estimation performance but requires an entire sequence of observation to be processed backwards. Both theoretical analysis and numerical evaluations show that the EM-EFLKS is superior to EM-EKS and achieves the performance of non-blind estimator asymptotically.
Keywords
Kalman filters; expectation-maximisation algorithm; numerical analysis; optimisation; parameter estimation; EM; EM-EFLKS estimator; chaotic signal; cognitive identification; extended fixed-lag Kalman smoothing; linear systems; nonblind estimator; nonlinear dynamics; numerical evaluations; online expectation maximization; semiblind parameter estimation; Chaos; Equations; Estimation; Mathematical model; Parameter estimation; Reactive power; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Cognitive Informatics & Cognitive Computing (ICCI*CC), 2014 IEEE 13th International Conference on
Conference_Location
London
Print_ISBN
978-1-4799-6080-4
Type
conf
DOI
10.1109/ICCI-CC.2014.6921442
Filename
6921442
Link To Document