• DocumentCode
    116143
  • Title

    Cognitive identification of systems using nonlinear dynamics

  • Author

    Xiaoxiang Liu ; Sabbir, Tarikul ; Leung, Henry

  • Author_Institution
    Complex Syst. Inc., Calgary, AB, Canada
  • fYear
    2014
  • fDate
    18-20 Aug. 2014
  • Firstpage
    61
  • Lastpage
    66
  • Abstract
    In this paper, we address the problem of semi-blind parameter estimation of linear systems driven by chaotic signal. We propose an on-line expectation maximization (EM) based extended fixed-lag Kalman smoothing (EM-EFLKS) estimator to simultaneously estimate parameters of system along with the chaotic signal. The performance of the proposed estimator is compared to its offline counterpart, EM-EKS estimator, which achieves ML estimation performance but requires an entire sequence of observation to be processed backwards. Both theoretical analysis and numerical evaluations show that the EM-EFLKS is superior to EM-EKS and achieves the performance of non-blind estimator asymptotically.
  • Keywords
    Kalman filters; expectation-maximisation algorithm; numerical analysis; optimisation; parameter estimation; EM; EM-EFLKS estimator; chaotic signal; cognitive identification; extended fixed-lag Kalman smoothing; linear systems; nonblind estimator; nonlinear dynamics; numerical evaluations; online expectation maximization; semiblind parameter estimation; Chaos; Equations; Estimation; Mathematical model; Parameter estimation; Reactive power; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cognitive Informatics & Cognitive Computing (ICCI*CC), 2014 IEEE 13th International Conference on
  • Conference_Location
    London
  • Print_ISBN
    978-1-4799-6080-4
  • Type

    conf

  • DOI
    10.1109/ICCI-CC.2014.6921442
  • Filename
    6921442