DocumentCode :
1161698
Title :
A small sample model selection criterion based on Kullback´s symmetric divergence
Author :
Seghouane, Abd-Krim ; Bekara, Maïza
Author_Institution :
Inst. Nat. de Recherche en Informatique et en Automatique, Le Chesnay, France
Volume :
52
Issue :
12
fYear :
2004
Firstpage :
3314
Lastpage :
3323
Abstract :
The Kullback information criterion (KIC) is a recently developed tool for statistical model selection. KIC serves as an asymptotically unbiased estimator of a variant (within a constant) of the Kullback symmetric divergence, known also as J-divergence between the generating model and the fitted candidate model. In this paper, a bias correction to KIC is derived for linear regression models. The correction is of particular use when the sample size is small or when the number of fitted parameters is a moderate to large fraction of the sample size. For linear regression models, the corrected criterion, called KICc is an exactly unbiased estimator of the variant of the Kullback symmetric divergence, assuming that the true model is correctly specified or overfitted. Furthermore, when applied to polynomial regression and autoregressive time-series modeling, KICc is found to estimate the model order more accurately than any other asymptotically efficient method. Finally, KICc is tested on real data to forecast foreign currency exchange rate; the result is very interesting in comparison to classical techniques.
Keywords :
autoregressive processes; exchange rates; information theory; polynomials; regression analysis; time series; J-divergence; Kullback information criterion; Kullback symmetric divergence; autoregressive time-series modeling; foreign currency exchange rate forecasting; linear regression model; polynomial regression; statistical model selection; Adaptive signal detection; Adaptive signal processing; Bayesian methods; Digital signal processing; Exchange rates; Helium; Linear regression; Polynomials; Signal processing; Testing; 211;Leibler information; 65; AIC; AICc; KIC; Kullback&#; autoregressive time series; model selection;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2004.837416
Filename :
1356227
Link To Document :
بازگشت