DocumentCode
1162268
Title
Moving average processes and maximum entropy
Author
Politis, Dimitris Nicolas
Author_Institution
Dept. of Stat., Purdue Univ., West Lafayette, IN, USA
Volume
38
Issue
3
fYear
1992
fDate
5/1/1992 12:00:00 AM
Firstpage
1174
Lastpage
1177
Abstract
A characterization of the stochastic process that has maximum entropy among all moving average processes of order q , subject to the condition that the autocovariances γ(k ) satisfy γ(k )=c k, for k=0,1,. . ., p, is provided by exploiting properties of the inverse autocovariance sequence
Keywords
correlation theory; entropy; information theory; parameter estimation; spectral analysis; stochastic processes; autocorrelation; autocovariances; inverse autocovariance sequence; maximum entropy; moving average processes; spectral estimation; stochastic process; Autocorrelation; Decoding; Encoding; Entropy; Gaussian processes; Laplace equations; Lattices; Speech; Stochastic processes; Vector quantization;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/18.135663
Filename
135663
Link To Document