DocumentCode
1162369
Title
Low-Pass Filters Using Ultraspherical Polynomials
Author
Johnson, D.E. ; Johnson, J.R.
Volume
13
Issue
4
fYear
1966
fDate
12/1/1966 12:00:00 AM
Firstpage
364
Lastpage
369
Abstract
The problem of approximating the ideal normalized amplitude response of a low-pass filter by the use of a set of ultraspherical polynomials is considered. The amplitude response obtained is more general than the analogous response of the Chebyshev filter because of an additional parameter available with the ultraspherical polynomials. It is shown that this additional parameter may be used to obtain a response having either less ripple or sharper cutoff than the Chebyshev response. The ultraspherical polynomial filter is shown to include as special cases the Chebyshev filter, the Butterworth filter, and a filter recently developed utilizing modified Legendre polynomials.
Keywords
Attenuation; Band pass filters; Chebyshev approximation; Jacobian matrices; Low pass filters; Nonlinear filters; Passband; Polynomials;
fLanguage
English
Journal_Title
Circuit Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9324
Type
jour
DOI
10.1109/TCT.1966.1082637
Filename
1082637
Link To Document