DocumentCode :
11635
Title :
Robust Face Recognition for Uncontrolled Pose and Illumination Changes
Author :
De Marsico, Maria ; Nappi, Michele ; Riccio, Daniel ; Wechsler, Harry
Author_Institution :
Sapienza Univ. of Rome, Rome, Italy
Volume :
43
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
149
Lastpage :
163
Abstract :
Face recognition has made significant advances in the last decade, but robust commercial applications are still lacking. Current authentication/identification applications are limited to controlled settings, e.g., limited pose and illumination changes, with the user usually aware of being screened and collaborating in the process. Among others, pose and illumination changes are limited. To address challenges from looser restrictions, this paper proposes a novel framework for real-world face recognition in uncontrolled settings named Face Analysis for Commercial Entities (FACE). Its robustness comes from normalization (“correction”) strategies to address pose and illumination variations. In addition, two separate image quality indices quantitatively assess pose and illumination changes for each biometric query, before submitting it to the classifier. Samples with poor quality are possibly discarded or undergo a manual classification or, when possible, trigger a new capture. After such filter, template similarity for matching purposes is measured using a localized version of the image correlation index. Finally, FACE adopts reliability indices, which estimate the “acceptability” of the final identification decision made by the classifier. Experimental results show that the accuracy of FACE (in terms of recognition rate) compares favorably, and in some cases by significant margins, against popular face recognition methods. In particular, FACE is compared against SVM, incremental SVM, principal component analysis, incremental LDA, ICA, and hierarchical multiscale local binary pattern. Testing exploits data from different data sets: CelebrityDB, Labeled Faces in the Wild, SCface, and FERET. The face images used present variations in pose, expression, illumination, image quality, and resolution. Our experiments show the benefits of using image quality and reliability indices to enhance overall accuracy, on one side, and to provide for indi- idualized processing of biometric probes for better decision-making purposes, on the other side. Both kinds of indices, owing to the way they are defined, can be easily integrated within different frameworks and off-the-shelf biometric applications for the following: 1) data fusion; 2) online identity management; and 3) interoperability. The results obtained by FACE witness a significant increase in accuracy when compared with the results produced by the other algorithms considered.
Keywords :
biometrics (access control); correlation methods; face recognition; filtering theory; image classification; image fusion; image matching; image resolution; pose estimation; principal component analysis; support vector machines; CelebrityDB; FACE; FERET; ICA; SCface; authentication application; biometric application; biometric probe; biometric query; classifier; correction strategy; data fusion; decision-making purpose; face analysis for commercial entities; face image; face recognition; filter; hierarchical multiscale local binary pattern; identification application; identification decision; illumination change; illumination variation; image correlation index; image matching; image quality; image resolution; incremental LDA; incremental SVM; interoperability; labeled faces; normalization strategy; online identity management; pose change; pose variation; principal component analysis; reliability indices; template similarity; uncontrolled pose; Accuracy; Face; Face recognition; Indexes; Lighting; Robustness; Clustering; correlation index; face recognition; identity management; image quality index; interoperability; pose and illumination changes; reliability indices;
fLanguage :
English
Journal_Title :
Systems, Man, and Cybernetics: Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
2168-2216
Type :
jour
DOI :
10.1109/TSMCA.2012.2192427
Filename :
6196234
Link To Document :
بازگشت