DocumentCode :
1164092
Title :
Stability of Linear Time-Invariant Systems
Author :
Desoer, Charles A. ; Wu, Min-yen
Volume :
15
Issue :
3
fYear :
1968
fDate :
9/1/1968 12:00:00 AM
Firstpage :
245
Lastpage :
250
Abstract :
The stability of a single-input, single-output, singleloop, linear, time-invariant system is related to the properties of its open-loop gain. The impulse response of the open-loop system may be of the form g(t) = r + g_{a}(t) + \\sum _{i=0}^{\\infty } g_{i} \\delta (t - t_{i}) where r is a nonnegative constant, g_{a} is integrable on [0, \\infty ) , and \\sum _{i=0}^{\\infty } |g_{i}| < \\infty . If the Nyquist diagram of the open-loop gain does not go through nor encircle the critical point, then the closed-loop system is inputoutput stable, in the several meanings explained in the paper.
Keywords :
Banach algebra; Nyquist criterion; Algebra; Circuit stability; Circuit theory; Distributed parameter circuits; Frequency; NASA; Output feedback; Propagation losses; Servomechanisms; Sufficient conditions;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1968.1082819
Filename :
1082819
Link To Document :
بازگشت